Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Ä¡°ú¿ë ±Û¶ó½º-¼¼¶ó¹Í »ýüÀç·áÀÇ °³¹ß : ¥°. Ä¡°ú¿ë ±Û¶ó½º ¼¼¶ó¹ÍÀÇ ÇÕ¼º°ú ¹°¼º¿¡ °üÇÑ ¿¬±¸

Development of Dental Glass-Ceramic Biomaterials : ¥°. Studies on the Synthesis and Physical Properties of Dental Glass-Ceramic

´ëÇÑÄ¡°ú±âÀçÇÐȸÁö 1999³â 26±Ç 2È£ p.165 ~ 180
±èöÀ§, À±È£Áß, ±èÁ¤ÈÆ, ÀÓ¹ü¼ø,
¼Ò¼Ó »ó¼¼Á¤º¸
±èöÀ§ (  ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡Çבּ¸¼Ò
À±È£Áß (  ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇÐ
±èÁ¤ÈÆ (  ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°ú»ýüÀç·áÇÐ
ÀÓ¹ü¼ø (  ) - ¼­¿ï´ëÇб³ Ä¡°ú´ëÇÐ Ä¡Çבּ¸¼Ò

Abstract

°á·Ð
Ä¡°ú¿ë ±Û¶ó½º-¼¼¶ó¹ÍÀ» °³¹ßÇÏ°íÀÚ »ó¿ë ±Û¶ó½º-¼¼¶ó¹Í°ú À¯»çÇÑ Á¶¼ºÀ» °®´Â ¿î¸ð°è
±Û¶ó½º-¼¼¶ó¹ÍÀÎ EXP-1 °ú ¹× ÀÎȸ¼®°è (A-W) ±Û¶ó½º-¼¼¶ó¹ÍÀÎ EXP-2¸¦ ÇÕ¼ºÇÏ¿´°í, Á¶
¼ºÀ» º¯È­ÇÑ ¿î¸ð°è ±Û¶ó½º-¼¼¶ó¹Í EXP-1A °ú ÀÎȸ¼®°è (A-W) ±Û¶ó½º-¼¼¶ó¹ÍÀÎ
EXP-2A, EXP-2B ¹× EXP-2C µî ÃÑ 6 Á¾ÀÇ ±Û¶ó½º-¼¼¶ó¹ÍÀ» ÇÕ¼ºÇÏ¿© Áֻ翭·®ºÐ¼®±â¿Í
x-¼± ȸÀý ºÐ¼®±â·Î ±Û¶ó½º ÀüÀ̿µµ, °áÁ¤È­ ¿Âµµ ¹× °áÁ¤»óÀÇ Çü¼ºÀ» ºÐ¼®ÇÏ¿´´Ù. ¿­Ã³¸®
Á¶°Ç¿¡ µû¸¥ ±Û¶ó½º-¼¼¶ó¹ÍÀÇ °áÁ¤È­¿Í ¹Ì¼¼±¸Á¶ º¯È­¸¦ ÃøÁ¤ÇÏ¿´°í, ÇÕ¼ºÇÑ ±Û¶ó½º-¼¼¶ó¹Í
ÀÇ ±â°èÀû °¡°ø¼º, ¾ÐÃà°­µµ, ±¼°î°­µµ ¹× Ç¥¸é°æµµ µî ±â°èÀû Ư¼º, ¿ëÇصµ¿Í »öÁ¶ ¾ÈÁ¤¼º
À» ÃøÁ¤ÇÑ ¹Ù ´ÙÀ½°ú °°Àº °á°ú¸¦ ¾ò¾ú´Ù.
1. ¿î¸ð°è ±Û¶ó½º-¼¼¶ó¹Í EXP-1¿¡¼­´Â
KMg3(Si3AlO10)F2¿Í
NaMg3(Si3AlO10)F2 °áÁ¤»óÀ», EXP-lA Àº ÀÌ
µÎ °áÁ¤»ó°ú ¾ÆÆÄŸÀÌÆ® °áÁ¤»óÀÎ
Ca10(PO4)6(OH)2¸¦ Çü¼ºÇÏ¿´´Ù.
2. ¿î¸ð°è ±Û¶ó½º-¼¼¶ó¹ÍÀÇ ±â°èÀû °¡°ø¼ºÀº ¿ì¼öÇÏ¿´À¸¸ç, ÀÎȸ¼® °áÁ¤À» ¼®ÃâÇÑ
EXP-1A ÀÇ ¹°¼ºÀº EXP-1 °ú À¯ÀÇÇÑ Â÷ÀÌ°¡ ¾ø¾ú´Ù (p>0.05).
3. ÀÎȸ¼®°è ±Û¶ó½º-¼¼¶ó¹ÍÀº ¾ÆÆÄŸÀÌÆ®¿Í wollastonite °áÁ¤»óÀ» Çü¼ºÇÏ¿´°í, ¿­Ã³¸® ¿Â
µµ°¡ Áõ°¡ÇÒ¼ö·Ï ¥â-TCP °áÁ¤»óÀ» Çü¼ºÇÏ¿´´Ù.
4. ÀÎȸ¼®°è ±Û¶ó½º-¼¼¶ó¹ÍÀÇ ±â°èÀû °¡°ø¼ºµµ ¿ì¼öÇÏ¿´´Ù. ¹°¼ºÀº
Al2O3¸¦ ÷°¡ÇÑ EXP-2A°¡ °¡Àå ¿ì¼öÇÏ¿´°í,
TiO2¸¦ ÷°¡ÇÑ EXP-2B´Â °¡Àå ³·¾ÒÀ¸¸ç, Al2O3
¿Í TiO2¸¦ ÇÔ²² ÷°¡ÇÑ EXP-2C ´Â Áß°£À̾ú´Ù.
#ÃÊ·Ï#
The aim of this study was to synthesize the glass-ceramic and investigate its effect
of chemical component and heat treatment process on the physical properties. Six
experimental glass-ceramics were synthesized, and analysed by the differential scanning
calorimetry and the x-ray diffractometer. Glass transition temperature and crystal
formation temperature were measured. Machiniability of glass-ceramic was evaluated
using CAD-CAM equipment. Also flexural strength, compressive strength, surface
hardness, solubility, and color stability were tested. From the experiments, the following
results were obtained. In the mica based glass-ceramic, EXP-1,
KMg3(Si3AlO10)F2 and
NaMg3(Si3AlO10)F2 crystalline were formed,
and in addition to those crystallin form, apatite
[Ca10(PO4)6(OH)2] crystal was
observed in EXP-lA. The optimum temperature for crystallization in EXP-1 group was
about 1070 ¡É. The mica based glass-ceramics exhibited the excellent machinability and
no significant difference (p>0.05) in physical porperties was observed between the
EXP-1A and EXP-1. Apatite and wollastonite crystalline were precipitated in EXP-2
groups and ¥â-TCP crystal was also formed at high temperature treatments. The
optimum temperature for crystallization in EXP-2 group was about 900 ¡É. The A/W
based glass-ceramics exhibited the excellent machinability. EXP-2A showed a slight
increase in mechanical properties, while EXP-2B showed no statistical difference
(p>0.05).

Å°¿öµå

glass-ceramic; machinability; crystal; physical properties;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI